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Although bis-cyclopentadienyl derivatives of the group 4
transition metals have been proposed as reactive intermediates
in a wide range of reactions, none have been structurally
characterized. Attempts to prepare Ti(η-Cp)2 have been frustrated
by the reactivity associated with this carbene analogue. To date,
all structurally characterized titanocenes have required the
coordination of neutral ligands such as N2, CO, pyridine,
phosphines, or acetylenes in order to stabilize the d2 metallocene
moiety. Moreover, all of these derivatives exhibit nonparallel
cyclopentadienyl rings (Table 1).1-9 More recently, our col-
leagues at Sussex have prepared and structurally characterized
the bent metallocene, Ti(η-C2P3But

2)2.10 We now report the
synthesis of Ti(η1-Cps)2Cl (1) and [Ti(η-Cps)2] (2) (Cps )
C5Me4(SiMe2But)) and in the case of the latter the first example
of a structurally authenticated titanocene. Furthermore, due to
the steric demand of the Cps ligands, a parallel configuration for
the Cps ligands is observed.

The reaction of 2 equiv of the lithium salt of Cps with TiCl3 in
hexanes/THF afforded Ti(η5-Cps)2Cl. Recrystallization from
toluene produced green crystals in high yield (74%).11 The
reduction of1 using Na/Hg amalgam resulted in the isolation of
2 as a red-brown solid which was subsequently recrystallized from
toluene.12 The molecular structure of2 was determined.13 The
Ti atom sits on an inversion center between equidistant cyclo-
pentadienyl rings that are planar, staggered, and exactly parallel
(Figure 1). The SiMe2But substituents are rotated by 180° with

respect to one another, with the Me groups directed toward and
the But group away from the Ti. The Ti-centroid distance,
2.018(4) Å, is relatively short compared with those previously
measured for other metallocenes of TiII and is similar to that
observed in a related Ti(IV) derivative (Table 1). As in the case
of [Fe(η5-Cps)2], [Sn(η5-Cps)2],14 and [Pb(η5-Cps)2],15 the steric
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13.807(1) Å,â ) 93.566(8),V ) 1553(1) Å3, Dcalc ) 1.11 g cm-3, Z ) 2.
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Table 1. Selected Structural Data for Selected Titanocenes

cmpd
M1-Ti-M2
angle (deg) Ti-M distance (Å)

[{Ti(η-C5HMe4)(µ-η2:η5-C5Me4)}2]1 141 2.0515(9), 2.0231(9)
Ti(η5-C5Me5)2[η2-{C(SnMe3)}2]2 141 2.115(14)
Ti(η5-C5Me5)2[η2-{C(SiMe3)}2]3 139 2.118, 2.109
Ti(η5-C5H5)2[η2-{C(SiMe3)CPh}]3 139 2.115-2.117(14)
[Ti(η5-C5Me5)2(µ-N2)]4 145-146 2.061-2.071
[Ti(η5-C5Me5)2(η2-C2H4)]5 144 2.092(5)
[Ti(η5-C5Me5)2(CO)2]6 148 2.06, 2.07
[Ti(η5-C5H5)2(PF3)2]7 137, 138 2.012-2.020
[Ti(η5-C5H4Me)2dmpe]8 135 2.039, 2.052
[Ti(η5-C5H5)2(PMe3)2]9 133, 134 2.049-2.062(14)
[Ti(η5-Cps)2] 180 2.018(4)
[Ti(η5-Cps)Cl3]18 2.027

Figure 1. The molecular structure of2 and atom numbering scheme
with selected bond lengths (Å) and angles (deg): Ti-M(1) 2.018(4),
Ti(1)-C(1) 2.315(3), Ti-C(2) 2.341(3), Ti-C(3) 2.386(4), Ti-C(4)
2.383(4), Ti-C(5) 2.334(3), M(1)-Ti-M(1′) 180.0. M(1) denotes the
centroid of the ring C(1) to C(5).
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demands of the Cps ligands result in a parallel configuration of
the Cps rings rather than the “bent” structure anticipated from
electronic considerations. Both extended Hu¨ckel calculations16

and, more recently, ADF-based results17 have shown that for a
d2 metallocene there is no significant change in energy as the
metallocene bends (ca. 40°), unlike for ferrocene where deviations
from a parallel configuration result in a significant increase in
energy. We propose that the parallel nature of the cyclopenta-
dienyl rings of2 is due to the methyl-methyl repulsions which
would arise from any further decrease in the C(7)-C(11′), C(7′)-
C(11) and the C(8)-C(10′), C(8′)-C(10) distances, 3.553(5) and
3.475(5) Å, respectively. Furthermore, the energy required to
bend the SiMe2tBu out of the cyclopentadienyl plane, as observed
in the case of [Fe(η5-Cps)2] (16.6°),14 would not be compensated
for by a concomitant decrease in energy obtained upon bending.

Additionally, a lateral displacement of the Cps rings with respect
to one another is also evident from the short Ti-C(1) bond. Solid
samples of2 are remarkably stable with respect to aerial oxidation
(decomposing on standing overnight) although solutions turn
bright yellow immediately upon exposure to air. The1H NMR
spectra of1 and2 each displayed broad resonances characteristic
of paramagnetic species. For2, a determination of the magnetic
moment was undertaken (µ ) 2.4) and was consistent with the
(e2g)2 nature of the ground state.
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